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ABSTRACT 
 
FAPEC is the adaptive version of PEC, a data compression algorithm based on an entropy coder. By default, FAPEC 
provides basic pre-processing stages such as delta pre-processing, that is, outputting the differences between 
consecutive values. Although this approach already provides good results, in case of image compression a further 
improvement can be done by taking advantage of the inter-pixel correlations. Besides that, FAPEC only performs 
lossless compression and it would benefit from a lossy implementation. Here we describe a new image pre-processing 
algorithm, called Hierarchical Pixel Averaging (HPA), which has been developed as a pre-processing stage for FAPEC. 
HPA divides an image in blocks of 16 by 16 pixels which are subsequently divided into smaller blocks, defining 
different block levels up to the basic one where one block corresponds to one pixel. Average pixel values are 
determined for each level, from which differential coefficients are extracted leading to values which are smaller (and 
thus more compressible) than the original ones. This algorithm provides some advantages with respect to other 
solutions. It decreases the entropy levels of the data that are passed to FAPEC for compression, thus increasing the 
achievable compression ratios. It does not present the typical artefacts seen in wavelet-based image compression 
algorithms, and it provides better resolution in sharp image edges. It is based on simple arithmetic operations, allowing 
a very simple (thus quick) implementation, furthermore avoiding any floating-point operations – a feature which is 
interesting for satellite or embedded data compression. The algorithm allows the introduction of controlled losses with 
several quality levels, furthermore allowing to progressively decompress a given image – from the lowest quality to the 
highest one. We present a first implementation of the FAPEC+HPA image compression algorithm and the results 
obtained on a variety of images, both for the lossless and lossy cases with different quality levels. Our results indicate 
that this solution offers a performance comparable to that of the CCSDS 122.0 standard. 
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I. INTRODUCTION 
 
Given the big amount of data in the new generations of satellites for space exploration and Earth observation, a very 
efficient compression algorithm is needed which can reduce drastically the size of the data to be transferred to the 
ground segment. Each space mission has strict requirements in terms of available bandwidth for the data downlink, 
available time for such transfer, and available computing resources on-board. Each of these resources is very expensive, 
so the cost of each mission can be strongly affected by the compression algorithm chosen.  
Other limitations come from the architecture of the on-board processor or hardware implementation. In some cases they 
cannot perform floating-point operations, but in general it is advisable to avoid so – especially in case of lossless 
compression.  This means that the algorithm must be kept as simple as possible. For the lossy compression it means 
avoiding wavelet-like or DCT-like (discrete cosine transform) processing [1, 2]. 
In this paperwork we introduce a new image compression algorithm, called Hierarchical Pixel Averaging (HPA). It is a 
pre-processing stage for FAPEC [3], an entropy coder which can offer better results than the current standard for 
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lossless data compression in space (CCSDS 121.0 [4]). The latter is based on the Rice-Golomb coding method, which is 
conceived for noiseless data following geometric distributions. Its performance rapidly degrades in the presence of 
outliers. FAPEC, on the contrary, is much more resilient in front of unexpected data, providing good compression 
efficiency under almost any situation. 
The goal of the HPA approach is twofold. On one hand, we intend to achieve better compression ratios by taking 
advantage of the inter-pixel correlations typically present in an image. Its design has been kept simple: it only uses 
simple arithmetic calculations, which makes it suitable to be embedded on-board satellite payloads. On the other hand, 
its design allows progressively introducing controlled losses in the compression, further increasing the compression 
ratios at the expense of a reasonable quality loss in the reconstructed image. 
 
II. THE HPA CONCEPT 
 
II.1. Image blocks and levels 
 
The basic image block of the HPA algorithm consists of just 16×16 pixels. Let us call the entire block a Level-4 block. 
It can be divided into 4 smaller areas or quadrants, each one with an 8-pixels side, which we call Level-3 blocks. In the 
same way, we can define Level-2 blocks (with 4-pixels sides) and Level-1 blocks (with 2-pixels sides). Finally, the 
Level-0 consists of the 256 individual pixels. Summarizing, for each 256 pixels block, we define 256 level-0 pixels, 64 
level-1 blocks (each made of 2×2 pixels), 16 level-2 blocks (each made of 4×4 pixels), 4 level-3 blocks (each made of 
8×8 pixels), and finally 1 level-4 block (made of 16×16 pixels). A visual representation can be seen in Fig. 1, where 
only a fraction of the blocks is highlighted and numbered for the sake of clarity. 
 

 
Figure 1: One HPA block, formed by 16×16 pixels 

 
A consequence of such a hierarchy is that each block of level n + 1 is composed of 4 blocks of level n, and that the 
average value of the n + 1 level block is equal to the mean of the average values of the 4 sub-blocks of level n. Eq. (1) 
describes this relation as follows: 
 

 ( ) ( ) ( ) ( ) ( ) ( )Aρ+EH+DH+CH+BH=AH 1+n
nnnn

+n 41  (1) 

 
Where ( )AH +n 1  is the average of block A from level (n + 1), ( )Aρn  is the remainder of its division by 4, ( )BHn  is 
the average of the block B from level n, etc. By inverting Eq. (1), we can calculate one of the lower-level coefficients 
by knowing the one from the upper level and the other three of the present level as follows: 
 

 ( ) ( ) ( ) ( ) ( ) ( )DHCHBHAρ+AH=EH nnn1+n+nn −−−× 14  (2) 
 



The basic concept behind the HPA algorithm is to extract differential coefficients from the average values and to 
compress them instead of the original pixels. The relation between the differential coefficient and its original value is 
shown in Eq. (3): 
 
 ( ) ( ) ( )AHiH=iH +nnn 1−Δ  (3) 
 
Combining Eq. (2) with Eq. (3), the whole block of 16×16 pixels can be represented with the following coefficients: 

• Level 0 block: 192 × 0HΔ  

• Level 1 block: 48 × 1HΔ  

• Level 2 block: 12 × 2HΔ  

• Level 3 block: 3 × 3HΔ  

• Level 4 block: 1 × 4H  
The total number of coefficients to be coded (that is, 256) remains, this way, identical to the number of original pixels 
in the block. Nevertheless, we have some overhead caused by the reminders: 

• Level 1 block: 64 ρ1 remainders, which can be coded in just 2 bits each – leading to 16 bytes in total. 

• Level 2 block: 16 ρ2 remainders, that is, 4 bytes. 

• Level 3 block: 4 ρ3 remainders, that is, 1 byte. 

• Level 4 block: 1 ρ4 remainder, that is, 2 bits. 
The total overhead of the HPA algorithm is given by those reminders, which sum 21 bytes + 2 bits. This represents an 
overhead of 0.66 bits per pixel, which is compensated by the smaller entropy levels achieved with the differential H 
coefficients. 
 
II.2. HPI variant 
 
A variant of the HPA algorithm is the Hierarchical Pixel Interpolation algorithm, or HPI. The difference is in the 
differential coefficient calculation. As we saw, in the HPA the difference is calculated, as in Eq. (3), by subtracting the 
lower-level average value from the high level average values. Instead, in the HPI, first of all, the average values of level 
1 are interpolated in order to predict the pixel values. Subsequently, the differential coefficients are calculated by 
subtracting lower-level average values from the interpolated pixels just calculated. Eq. (3) is, therefore, modified into 
the following: 
 
 ( ) ( ) ( )'0 iPiP=iH 00 −Δ  (4) 
 
where ( )'0 iP  is the interpolated pixel. Since the interpolated pixel is more similar to the original pixel than the average 
coefficient of the upper level, the differential coefficients of the HPI implementation have lower entropy and, hence, are 
more compressible. 
 
II.3. Implementation 
 
A first prototype of the algorithm has been implemented in C and tested on an Intel i686-64bit platform running Fedora 
Linux. The GNU Compiler Collection (GCC) was used to compile the code to binary files. 
 
III. LOSSY HPA 
 
One of the advantages of the HPA algorithm is that it is easy to introduce controlled losses. The evolution to the lossy 
version of the algorithm consists of removing some of the least significant bits (LSB) from the ∆H or the ρ coefficients. 
Note that HPA allows this because we keep working in the image domain, whereas other approaches such as DWT 
would lead to strange and uncontrolled effects when removing such bits from the transformed domain coefficients. In 
the Lossy HPA we have opted to allow different configurations depending on the quality level required. In particular, in 
our strategy the number of bits removed from the ∆H coefficients varies from 0 to 8, and the number of bits removed 



from the ρ remainders varies from 0 to 2. Following this strategy, we define the Quality Levels (hereafter QL) of lossy 
HPA as follows. QL 0 is the lossless compression (no LSB removal). In QL 1 we remove 1 bit from ∆H0 and 1 bit from 
ρ1, which in practice is equivalent to removing 1 bit per pixel. In QL 2, 2 bits from ∆H0 and 2 bits from ρ1 are removed, 
meaning that we remove ρ1 completely. In QL 3, we discard 3 bits from ∆H0, 1 bit from ∆H1, 2 bits from ρ1 and 1 bit 
from ρ2. In QL 4 we discard 4 bits from ∆H0, 2 bits from ∆H1, 2 bits from ρ1 and 2 bits from ρ2. This otherwise intuitive 
and progressive approach is continued until QL 8, where we drop 8 bits from ∆H0 (that is, this coefficient is completely 
removed), 6 bits from ∆H1, 4 bits from ∆H2, 2 bits from ∆H3, and all ρ remainders. 
The LSB are removed by right shifting the same amount of bits. The consequence of this removal is that the histogram 
of the differential coefficients results more steep and centred around 0. Fig. 2 compares the histograms of the ∆H0 
coefficients of the lossless version against the Q2 lossy version.  
 

 
Figure 2: Qualitative comparison of the HPA coefficients entropy for lossy (bottom panel) and lossless (top panel) 

 
IV. TESTS AND RESULTS 
 
We have run several tests of the HPA algorithm (using the HPI variant) on a set of different images in raw format. The 
main goal of these tests is to compare the HPA+FAPEC combination against the CCSDS 122.0 standard, nowadays 
used in space applications. Two test campaigns have been executed to compare the performance of these compressors, 
namely, using the lossless configuration (considering compression ratios and execution times), and using the lossy 
versions with different quality levels (considering also the Peak Signal to Noise Ratio, or PSNR). Please note that the 
CCSDS 122.0 implementation used for these tests uses a lossy compression approach which is different from the 
standard one, namely, here we completely remove a given number of quadrants of DWT coefficients depending on the 
lossy level. Specifically, for the first level we remove one fourth of the grandchildren coefficients (that is, one fourth of 
the total DWT coefficients). For the second level, we remove all the grandchildren coefficients (thus leaving only one 
fourth of coefficients to code). For the third level, we remove all the parent coefficients (thus leaving only 1/16th of 
coefficients). And finally, for the fourth level we only leave the DC coefficients. More details can be found in [2]. In 
future tests we will include the comparison with the standard lossy compression approach. 
 
IV.1. Image compression corpus 
 
Fig. 3 shows some of the images that have been used for the tests. They are, from left to right and from top to bottom: 
banyoles, catedral, eixample, pirineus, Europe (an EUMETSAT image), and florida (a NOAA image). The four first 
images are 1024×592 in 8-bit greyscale. The original meteorological images were in 8-bit colour (24-bit per pixel), but 
here we have reduced them to 8-bit greyscale. They are 3600×2992 and 1408×1248 pixels respectively. 



 
Figure 3: Image corpus used in our tests 

 
IV.2. Lossless compression performance 
 
We first compare our prototype of HPA+FAPEC against the original FAPEC and the standard CCSDS 122.0. Table 1 
compares the performance in terms of compression ratio (CR) and execution time. The results show that the 
HPA+FAPEC combination performs more or less similar to FAPEC alone, in terms of CR. The execution time is 
understandably larger than FAPEC alone, due to the HPA pre-processing. Comparing HPA with CCSDS 122.0 we can 
see that, in general, the latter compresses the images more than the former. This is an acceptable result, if we consider 
that the principal application of the HPA algorithm is to create a framework for lossy image compression. In terms of 
execution time, HPA runs in average 27% faster than CCSDS 122.0 – despite of being a prototype. 
 

Table 1: Lossless performance comparison between HPA+FAPEC and CCSDS 122.0 
 

 FAPEC HPA + FAPEC CCSDS 122.0 
 CR Exec. time CR Exec. time CR Exec. time 

banyoles 1.28 78 ms 1.29 164 ms 1.45 209 ms 
catedral 1.09 81 ms 1.08 171 ms 1.17 231 ms 

eixample 1.13 80 ms 1.14 172 ms 1.25 228 ms 
pirineus 1.32 75 ms 1.29 166 ms 1.47 211 ms 

florida 1.85 1201 ms 1.76 2660 ms 2.27 2999 ms 
europe 1.59 210 ms 1.54 449 ms 1.94 539 ms 

 
IV.3. Lossless compression performance on noisy data 
 
We must remind that one of the strengths of FAPEC is its resilience in front of outliers, and therefore the HPA+FAPEC 
combination should also reveal that. In order to prove the robustness of our solution on that regard, we have added some 
noise to the images and compared the loss in CR against CCSDS 122.0. We have introduced one noisy pixel every 100th 
pixel – which is quite sensible in space instrumentation. Table 2 shows the results of this test, which reveals that the 



percentage of loss in 122.0 CR is typically twice or three times the loss with FAPEC. This proves that the HPA 
algorithm is more robust to the noise than CCSDS 122.0.   
 

Table 2: Percentage of CR loss between FAPEC + HPA and CCSDS 122.0 in presence of noise 
 

 HPA + FAPEC CCSDS 122.0 
 CR CR loss CR CR loss

banyoles 1.27 1.25 % 1.40 3.22 %
catedral 1.07 0.34 % 1.16 0.77 %

eixample 1.13 0.59 % 1.23 1.44 %
pirineus 1.27 1.05 % 1.43 2.90 %

florida 1.72 2.54 % 2.17 4.50 %
europe 1.50 2.49 % 1.78 8.11 %

 
IV.4. Lossy compression performance 
 
We have considered the HPA quality levels from QL1 to QL7 for the comparison of both the CR and the execution time. 
Fig. 4 shows the comparison of the compression ratios achieved by HPA and CCSDS 122.0. The left panel shows the 
results for images of similar size, namely, 1024×592, whereas the right panel presents the results for larger images. In 
general, HPA achieves a better PSNR than CCSDS 122.0. Only for the florida image we achieve slightly worse PSNR 
values, but on the other hand we offer more intermediate quality levels, also reaching a higher PSNR value for the QL1 
case with respect to the 122.0 level 1. 
 

 
Figure 4: Comparison of the CR between Lossy FAPEC and CCSDS 122.0 

 
Fig. 5 shows that CCSDS 122.0 typically runs slower than HPA+FAPEC in the quality level Q1, but it runs faster at 
higher quality levels. This behaviour is due to the fact that the implementation we used for CCSDS 122.0 processes 
fewer coefficients at each quality level – thus reducing the execution time required by the bit plane encoder. On the 
contrary, the HPA algorithm processes the image completely, sending always the same number of coefficients to 
FAPEC. The reduction in execution time for FAPEC is, hence, due to the lower entropy of the HPA coefficients. It is 
important to point out that this is the first prototype of the HPA algorithm and that further optimizations are still 
possible to make it more efficient.  
Finally, Fig. 6 shows a detail of the banyoles image recovered after a lossy compression, using QL 6 for HPA and QL 2 
for CCSDS 122.0. This is actually an “error map”, where each pixel shows the error in the reconstruction of that pixel 
with respect to the original image. White pixels mean a perfect reconstruction, while dark or black pixels mean a larger 
error. In this comparison we can see a more random appearance of the reconstruction errors for the case of HPA, 
especially around sharp edges of the image, whereas in the case of 122.0 the errors are more evident in such edges. That 



means that with lossy HPA the reconstruction errors are more smoothly distributed all over the image, whereas with 
122.0 these are more evident in the sharp edges – effectively smoothing such edges in the reconstructed image. 
 

 
Figure 5: Comparison of the Execution time between Lossy FAPEC and CCSDS 122.0 for normal size and big image  
 
 

 
Figure 6: Error map showing the reconstruction errors after lossy compression with HPA+FAPEC (left panel) and 

CCSDS 122.0 (right panel) for the banyoles image 
 
V. FUTURE IMPROVEMENTS 
 
The HPA algorithm and its HPI variant, despite of still being prototypes, have shown a great potential. Nevertheless 
there is much space for improvements. So far, the image dimensions are limited to multiples of 16 pixels on both 
dimensions, so a first improvement is to overcome this limitation and make HPA able to process images of any size. 
Additionally, the algorithm is only able to handle greyscale images. It is foreseen a more versatile implementation to 
compress colour and even hyperspectral images. Besides, the algorithm needs a final optimization which will reduce the 
execution time needed to compress an image. We also envisage improvements in the FAPEC core to improve the 
compression ratio for very low entropy data, which should improve the ratios achieved with HPA. Finally, regarding the 



lossy compression, a feature that would improve the algorithm usability is a logic which, given a desired CR (or bits per 
pixel), the adequate QL is adaptively selected. This means to add a control that allows the HPA to compress not only 
with fixed quality, but also with fixed compression ratio or bit rate. 
 
VI. CONCLUSIONS 
 
In this paper we have introduced a new image processing algorithm called Hierarchical Pixel Averaging (HPA). It has 
been designed as a new pre-processing stage for FAPEC, specific for images. The goal was to obtain an efficient image 
compression algorithm allowing to progressively move from lossless compression to lossy compression with different 
quality levels. 
The HPA implementation has been kept as simple as possible, avoiding floating-point operation in order to make it 
more suitable to be embedded on satellite payloads. We must also note that we have taken this approach (instead of the 
typical wavelet-based or transformation-based approaches) in order to minimize the artefacts that can be seen in the 
restored images when they are lossy compressed with very low quality levels. 
The results, when compared to the CCSDS 122.0 standard, shows that the HPA+FAPEC combination can compress an 
image significantly faster (27% on average) in the lossless scheme. The CR is slightly higher than with FAPEC alone, 
but still lower than lossless CCSDS 122.0. In the lossy scheme, HPA is able to achieve higher compression ratios and 
PSNR values. The quality of the recovered images are very good, and one of the interesting results is that the restored 
images after lossy HPA keep most of the sharp image edges, whereas the restored images after lossy 122.0 present a 
significant smoothing in such edges. 
Summarizing, this new image compression approach appears as a very interesting alternative to the current image data 
compression standard for satellite payloads. 
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